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Abs*t: A simprijidprocedure for the synthesis ~f3,4~r~~-~-[nis(I-methylethyl)sityll-IH-pyrrole (21 is 
described together with its sequential halogen-metal exchange che&tty to @kd3,4-disubstitutedpwole.f. 

During efforts relating to the synthesis of analogues of the protein kinase C (PKC) activator,’ 

lyngbyatoxin A, the need arose to prepare certain 3,4disubstituted pyrroles as synthetic intennedlates. Because 

electrophilic aromatic substitution reactions of pyrroles occur predominantly at the a-position, selective 

substitution at one or more of the /3-positions has generally proven to be a mote challenging synthetic task. 

Although l-@henylsulfonyl)-I~-pyrrole will undergo AK&-catalyzed Friedel-Crafts acylation reactions at the 3- 

position, further electrophilic substitution at the 4position of the 3-acylpyrrole has generally proven 

unsuccessful.2 In most cases, the generation of 3.4-disubstituted pyrroles has required de rwvo synthetic 

approaches.3 

Lyngbyatoxln A 

3,4-Dibromo-l-[trls(l-methylethyl)sllyl]-lZ+pynole (2) has been synthesized previously and employed in 

the preparation of the unsymmetrically substituted natural product, verrucarln K4 Compound 2 has not, 

however, found widespread use, nor has it been fully exploited in the preparation of unsymmetrical 3.4 

disubstituted pyrroles. The limited use of 2 may be due to the reported difficulties in its synthesis and 

purification. Muchowski and Naef have published that treatment of I-[tis(l-methylethyl)silyl]-lH-pyrrole (1) 

with two equivalents of N-bromosuccimide (NBS) at -78 ‘C! provides 2.3~dibromo-I-[tris(l-methylethyl)sllyl]- 

ltl-pyrrole and 2 in a 1:l ratio. Separation of these two compounds requires careful crystallization at low 

temperatures. 

In this Letter we report an improved procedure for obtaining 2 and describe the transformation of this 

compound to a variety of 3,4dlsubstituted pyrroles. Compound 1 was accordingly treated by portionwise 
addition with 2.1 equivalents of NBS in THF at -78 ‘C! to provkle 2 in 78% yield.5 Both tH and t3C NMK 

spectroscopy failed to show the presence of any 2,3-dibromol-[tris(l-methylethyl)silyl]-l&pyrmle. Compound 
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2.1 cq. NBS, THF 

-78 ‘C 

2 is isolated as a crystalline solid with melting point 78-80 ‘C! (lit. mp 77 ‘C). It showed no sign of 

decomposition when stored at mom temperature in the dark for a period of time of up to six months. 

When compound 2 is neated with 1 equivalent of n-BuLi at -23 ‘C or 2 equivalents of r-B&i at -78 ‘C, it 

undergoes mono-halogen-metal exchange to affoni 3-bromo-4-lithio-1-[tris( 1-methylethyl)silyl]-lZ+pynole (3). 

Attempts to generate the dilithiopynole with 4 equivalents of r-BuLi at -78 ‘C wem not successful, and only 

products arising from mono-halogen-metal exchange were isolated, Table I shows the reactivity of compound 3 

toward a broad range of electmphiles. Methyl iodide (but not a 2’ alkyl halide, entry 2), aldehydes, a ketone 

(entry 7), a dialkyl carbonate (entry 8). and a 3’ amide (entry 9) all react smoothly.6 

Br Br 

I5 

Br Li 

-H 

Br 
2 eq. r-BuLi, THF Ektmphile 

&i-PQ 

-78 ‘C 

!i(i-Pr), 

X 

!i(i-Pr), 

2 3 

Table I. Reactions of Compound 3 with Various Ekctrophiles 

Entry Electrophile R Isolated Yields 

1 CH$ 

2 (CH&CHI 

3 (m3)3Si(J 

4 (n-Bu)$nCl 

5 CIHGIIC 

6 W43CHO 

7 c6%)2~ 

8 -3oa2cH3 

9 HCONK=3)2 

CH3 83% 

N.R. -_ 

(CHs)sSi 77% 

N.R. __ 

C&WWH) 82% 

Cd-h3CWOH) 78% 

GI-WX0I-U 789ba 

co2a3 73% a 

CHO 56% a 

a Yields detmmined after desilylation 

As revealed by Table II, symmetrical and unsymmetrical 3,4di-substituted pyrroles cau be synthesized by 

a second halogen-metal exchange reaction of the first formed mon&mmide. This reaction was tested employing 
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3-bromo-4-methyl-l-[tis(l-methylethyl)silyl]-ltl-pyrrole (4) as the test substrate and electrophiles similar to 

those employed in the first stage of the substitution process. 

Br 

l-f 

H3 Li 
2 eq. r-B&i. THF 

&Cl+), 

-78 ‘C *If 

hl 

Electrophile 

!i(CPr), 

4 5 

Table II. Reactions of Compound 5 with Various Electrophiies 

J-Y Electrophile R Isolated Yields 

1 CH$ -3 81% 

2 HCON(CH& CHO 71% 

3 cH30c02cH3 m2a3 86% 

4 C&I&HO c&&HroH) 70% 

5 W43CHO C&J3CH(OH) 64% 

6 w%)2~ GW2WH) 48% 

’ Yield detemined atler desilylation 

Following the protocols established in this paper, we have also succeeded in the synthesis of an 

intermediate for use in the preparation of a lyngbyatoxin A analogue. This chemistry is presented in the 

accompanying scheme. 

1 Scheme 1. Synthesis of a Lyngbyatoxin A Related Pyrrole Intermediate 
1. r-BuLi 

Br Br 2 DMP 

t( 
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In summary we believe that the chemistry repormd herein enhances the utility of the dibmmide 2 for the 

preparation of 34disubstituted pyrmles. 
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